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Clouds contribute the greatest uncertainty

|n climate predications

Radiative Forcing by Emissions and Drivers
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RELEVANT PROPERTIES OF COMPLEX CCN

Cloud condensation nuclei (CCN) activate and become cloud droplets.

The ability to be CCN depends on particle size and chemistry
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RELEVANT PROPERTIES OF COMPLEX CCN

Cloud condensation nuclei (CCN) activate and become cloud droplets.

The ability to be CCN depends on particle size and chemistry

Critical supersaturation, s, (%)
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The more complex the aerosol source,
the more difficult it becomes to characterize the changing

chemical and physical properties of the CCN.

Insoluble/Slightly wettable (x=0.001)

(NH,),50, (k=0.6)

a-pinene SOA (x = 0.15)
DL POA (x=~0.11+0.03)

MOF POA (k= 0.022 +0.02)
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RELEVANT PROPERTIES OF COMPLEX CCN

|_
4 The apparent hygroscopicity of complex CCN can be modified quickly.
LU
>3 Prevalent assumptions can shift the perceived the single
8 hygroscopicity parameter k for complex CCN by 100% or more
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OUR APPROACH TO COMPLEX HYGROSCOPIC PARTICLES

Source: NASA : Black Carbon Cloud Droplets (artist rendition)

(1) Provide Fast Measurement Techniques for Real-Worid BC
Sources

(2) Characterize changes in Physical and Chemical Properties that
can alter perceived Hygroscopicity of BC sources

(3) Refine Analysis Methods for complex CCN Mixing States
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NEAR-ROAD TESTING CHASSIS DYNAMOMETER

Part 1:
Vehicle Emission Sources

1) Traffic-related sources are a known emitter of particulate matter and black carbon
aerosol

2) Exposure within 30 m of roadway traffic has been known to affect respiratory
functions



Multi-Angle Absorption Photometer UR

|
* Black Carbon (BC) is measured with a Multi-Angle
Absorption Photometer (MAAP)
* The MAAP uses multiple light sources to determine the
reflective aerosol properties
Light Source (LED — 670nm)
Reflectance l Reflectance
Photodetectors Photodetectors
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I-710 Highway Field Measurements

* |[nstrument trailer was located 15
meters downwind of freeway

* Study focuses on measurements
from two different days

Weekday - May 11t and
Weekend - May 14t

PeMS sensbor r’

*
Place of/

measu;ément

PeMSsensor
(710.8)
. 4




Changes in BC Concentration due to Wind Direction
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Differences in Weekday Particle Distribution
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How are Particles sized?

* Dry Particles are first size selected with an
electrostatic classifying system

Scanning Mobility Particle Sizer (SMPS)

Long DMA (TSI 3081) selects sizes in the
range of 5 to 350 nm

Uses a Kr-85 radiation source to charge the
aerosol

Then applies a voltage in which electron
mobility will size select the particles

Mono-disperse particles then flow into the
Condensational Particle Counter (CPC) to

be counted
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TSI 3081 Electrostatic Classifier




How are Particles counted? K

|
* Dry nanoparticles are exposed to a supersaturation region in which wetted
droplets are grown to micron sizes

* Condensational Particle Counters (CPC) detects larger micron size
droplets with an optical particle counter (OPC)

* CPC supersaturation is generated with two different working fluids, Butanol
(TSI 3772) and Water (TSI 3785)

Optical Particle st et s e
Counter (OPC)
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Understanding Particle Counters

Condenser,
20°¢

Water vapor from wetted walls diffuse
faster than air and must be heated to

condense on dry particles Optical Particle
Counter

=

E * Water and Butanol CPCS_exp|OIt Entering Particle

< temperature and mass transfer . .

5 principles to grow droplets

O Butanol has a lower vapor

o pressure than and is larger in size  Water Butanol

a (> Mol. wt) than air oo (CownTube, o Saurar
m . o0 o .00

> Larger Butanol vapors diffuse ® 0 e | & %" g
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Counting Efficiency, Ratio of Water / Butanol
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Why the Difference?

Particle Volume Concentration

A Butanol CPC

Water CPC

Water Insoluble
Composition

Is the Insoluble
Contribution from BC?

Particle Size (Dp, nm)



Summary

Aerosol Science and Technology

AEROSOL Publication details, including instructions for authors and subscription information:
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A Unique Online Method to Infer Water-Insoluble

Particle Contributions

Daniel Short®™, Michael Giordano®, Yifang Zhu®, Phillip M. Fine®, Andrea Polidori® & Akua
Asa-Awuku™
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Accepted author version posted online: 23 Apr 2014.Published online: 25 Jun 2014.

* BC is prevalent at all times in near-roadway measurements

* The Butanol (TSI 3772) and Water based (TSI 3785) CPCs report
significantly different particle size and number concentrations
for traffic-related aerosol.
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* On average, there are more butanol particle counts than there
are water particle counts for sizes less than 100nm.

Below 30nm, the W-CPC is less than 50% efficient
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UCR CE-CERT Dynamometer Facilities

Particle Counter

Butanol-
<€ > Condensation
Particle Counter

Water-Condensation
Particle Counter

—

< Total Particle Concentrations

L Nucleation /Solubility Properties o

>3 Black Carbon Concentrations Dilution Tunnel

- —> Pump

e Secondary _

a Dilution Multl-An_gle
w Absorption
~> Photometer
=

L Scanning

E Butanol- Mobility

< ¢ Condensation Particle Sizer

<l

Q.

L

7))

-

Light Duty Chassis
Dynamometer




Impacts of BC Emissions

)

L)

» Vehicles emit carbonaceous particles
that can be water-insoluble and or
black carbon concentration

Changes in water-insoluble/ BC
composition will modify heterogeneous
particle nucleating behavior

)

L)

» Changes in fuel combustion will
modify vehicular emissions
Gas phase, particle composition and

concentration
How will changes in < Changes in Vehicle Technology cam
1) vehicle technology and modify vehicular emissions

2) fuels impact emissions?
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2 Gasoline Engine Technologies Tested

e PFlis the most common light-duty
Port Fuel Injection (PFI) engine system in use today

— Mixes fuel and air together before
injection into the combustion chamber

e Vehicles tested using this
technology:

Intake Valve Injector — 2007 Honda Civic and Dodge Ram
— 2012 Toyota Camry
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2 Gasoline Engine Technologies Tested

GDI Vehicles have increased fuel
efficiency when compared to
the typical PFI

O Gasoline and air are mixed in the
combustion chamber;

Gasoline Direct Injection (GDI)

Vehicles tested using this
technology:

— 2012 Kia Optima

— 2012 Chevy Impala

Intake Valve
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PFI vs. GDI Engine Technology impacts PM Number

e Larger Volume Engines will produce more Particles
— 2007 Dodge Ram- 5.7L 8-Cylinder Engine
— 2007 Honda Civic- 1.8L 4-Cylinder Engine

e The Newer PFl Technology can produce fewer particle emissions
— 2012 Toyota Camry- 3.5L 6-Cylinder Engine

* PFl vehicles produce fewer particles than GDI.
— 10 times the order of magnitude of particle emitted by a GDI than a PFI

7eq11 TET0—=10% Ethanolwith-Gasoline FTP

[ 6E+11
[ 5E+11
4E+11
3E+11
2E+11

1E+11

PM Concentration (#/mile)

2007 Honda Civic 2007 Dodge Ram

Port Fuel Injection Vehicles (PFl)
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Fuel Chemistry and Alcohol Blends

Ethanol

-~ NOH

“ Molecular Weight = 46.07 g mol*
% Flash Pointis 15°C

s+ Renewable Fuel made from corn
and other biomaterials

% Pure Form has a higher Octane
Number than Gasoline

% 95% of U.S. gasoline contains
ethanol fuel blend (E10)

Butanol

/\/\OH

% Molecular Weight = 74.12 g mol*
% Flash Pointis 35°C

 Butanol can be produced using
existing ethanol production facilities
with few modifications

*» Butanol, compared to ethanol,
has a lower vapor pressure and
is more easily blended with
gasoline

“ B16 is the oxygenated equivalent of
E10 fuel




Seven Alcohol Fuel Blends o
N

OH
E10- _ 10% Ethanol with 90% Gasoline +— Butanol
/N N0H
E15- 15% Ethanol with 85% Gasoline =
Equivalent
. . T~ Oxygen
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£20- » Ethanol wi o Gasoline <« Content
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B16 and E10 Emissions

e Again PFl vehicles produce fewer particles than GDI vehicles.

e B16 Fuel blends can produce more particles than E10 emissions

— Butanol has a lower vapor pressure, easily mixed with gasoline, and more likely to form
lower-vapor pressure products during combustion

< | ™ | B16 — 16% Butanol with Gasoline 113
= [ 7E+11 +— 9E+12 -
E E10 8E+12 -
o fees —
= 7E+12 -
.g SEv1l b | 6E+12 -
'(EU 4E+11 | S5E+12 -
"E 3E+11 4E+12 -
§ 2E411 3E+12 -
2E+12 -
o i 1
o | 1B 1E+12 -
> 0 ___ A
Q- 2007 Honda Civic 2007 Dodge Ram 2012 Toyota Camr, (PFl) 2012 Kia Optima 2012 Chevy Impala
Port Fuel Injection Vehicles (PFl) Gasoline Direct Injection (GDI)
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Fuel Blend Composition Affects PM Number

1.2E+12

Ethanol

Does Driving Cycle/

1E+12

gEr1l i Measurement Protocol
cEai1 - ) Matter? Yes!

4E+11 - —
SEr11 - B e Higher Oxygenated
Content for a given fuel
10 15 20 blend reduces PM
Number and Mass

concentrations for the
 Ethanol
%0 FTP cycle

40

H

PM Concentration (#/mile)

0 -

60 -

Equivalent oxygenated
- Butanol Fuels B24 and
B32 produce less
particles than Ethanol
Blend Counterparts.
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Port Fuel Injection Vehicle (PFI)




Driving Cycles

Federal Test Procedure (FTP)
Developed by the Environmental Protection Agency

Unified Cycle (UC)-
Developed by thg fa Air Resources Board)
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PM Concentration (#/mile)

PM Concentration (#/mile)
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Cycle Affects PM Concentrations

Federal Test Procedure
Ethanol o .

H

Unified Cycle

Ethanol T

|

Port Fuel Injection Vehicle (PFI)

S uw o
i i (o]
w w w

More particles can be
produced in the Unified
Cycle with the Toyota
Camry

And there is a greater
variation in fuel emission
results
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Black Carbon Concentrations modified by Fuel Blends

Federal Test Procedure
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'1_} 60

£ Ethanol
> |50

=2

c |40

o

Jc:'c 30

5 1

o |20 - I .
O

C

CHECR -
@)

o 0

= |70 - Unified Cycle
£ | T Ethanol

2 |so

S |40 1

S -

© |30 - — T
= 1 T

Q

O

C

o

@)

@)

(an]

Port Fuel Injection Vehicle (PFI)

More Black Carbon
Produced in Unified
Cycle; consistent with
greater PN concentration

The Particle
Composition will vary

by Fuel type and
Driving Cycle




GDI Water Insoluble Mass Fraction
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PFl Water Insoluble Mass Fraction

e 2012 Toyota Camry produces mostly water soluble aerosol
— Oxygen content for and butanol the hygroscopicity of the particles

— E10/B18 produces the most insoluble particles.
e The properties of the fuels are not additive
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Higher speeds produce water-soluble particles

09 | | The chemical
composition of
aerosol from steady-
state emissions is
NOT the same as the
emissions tested on
driving cycles.

Water Insoluble Mass Fraction

17" 70MPH 50MPH ~— 30 MPH —

0.8 This is true for

07 - Honda Civic Varying Fuels,
Vehicles, and Cycles
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Summary

On average, PN and BC concentrations were shown to decrease with
larger concentrations of butanol and ethanol gasoline mixtures

— Alcohol fuel blends can modify particle size, number, mass, and
composition,

GDI Vehicles emit 10 times more particles than PFI vehicles, even
though they have better fuel economy.

Of the vehicles tested the 2012 Toyota Camry had the fewest PM
emissions for every fuel type

PFl emissions can be more water-soluble compared to the GDI
particle emissions

Emission Particle hygroscopicity is dependent on vehicle
speed.
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Part 2:
BC from Biomass Burning Sources
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Biomass Burning (BMB)

* Biomass burning is a widespread
phenomena that is a major source of
global aerosol emissions (2-5
petagrams C/yr)

— Burning can be anthropogenic:itisa
common agricultural practice in land use
management, especially in the tropics

— It can also be biogenic: eg. Wildfires

* Biomass burning emissions are a
complex mixture gases and aerosols

The Rim Fire in Yosemite National Park (8/22/2013) which covered over 340 mi2.
Source: NASA Earth Observatory

 Biomass burning aerosol emissions can directly absorb or scatter light

e Emissions from biomass can be cloud condensation nuclei (CCN) active .. £nglehart et al,,
2012; Petters et al

39
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Getting closer to Ambient:
From Filters to Chambers g

*Manzanita and Chamise are
common shrubs in Southern
California (keeley and pavis, 2007)

% in wildfires shrubs can account for

nearly 80% of all biomass burned
(Clinton et.al.,2006)

Manzanita
Chamise

We explore online aging of dilute
concentrations of BMB aerosols
with particular attention to CCN

ability as a function of
photochemical aging.




UCR/CE-CERT Environmental Chamber

Argon Arc T
AMp__—" =  Dual 90 m? Teflon
il | . Pure air flushed, temperature  aactors

: N controlled room
Two banks of

black lights

e Entire room is
temperature
Rigid frames controlled (5-45C

— that de.scend £1°C )
% \ during
| -

pxperimentto  , 5 |\\/ Argon arc
maintain a

positive lamp or 80 115 W 4-
pressure ft blacklights

« Humidification (dry
<0.1 % to humid)

« Enclosure continually
flushed with pure air

-
<
L
=
-
O
o
(@
L
>
—
- -
O
o 4
<
<
o
Ll
2
=

www.cert.ucr.edu




CCN RELEVANT PROPERTIES OF BIOMASS BURNING
‘ (3) Time changes everything \

‘ (2) Chemistry is Important \

‘ (1) Size Does Matter \
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Online Instrumentation Offline

Particle Composition

Mobility Particle Sizer]
(TSI 3080, CPC 3772)

WA\
\

Filters are s
extracted in de-
ionized ultra

\
(Aerodyne Aerosol Mass —_— EIemenf[aI/
Spectrometer) — Organic
CE= > Carbon
Particle Size [Scanning == (Sunset EC/
= 0C)
[
=

filtered (~18 MQ) Surface
H,O Tension
(Attension Theta
Particle Volatility Tensiometer)
(Volatility Tgndem Differential Clean Air \ y
Mobility Analyzer, 300 x dilution
Homemade)

Water
. . luble
Particle Density g?gt;?:ii
Kanomax APM RS
( ) Carbon

(900 Sievers,

_ GE Analytical)

Particle Scattering
[Black Carbon]
(Thermo Fisher Multi-Angle
Absorption Photometer)

US EPA ARCHIVE DOCUMENT

Gas Phase
(NO/NO,, O,, COICO,, H,0,
GC-FID)




b=
<
L
=
=
O
o
(@]
98
=
—
-
O
(1 4
<
<
Q.
w
2
=

Condensation Nuclei (CN)
Entire Aerosol Distribution

Cloud Condensatic

(CCN)

>

NN Maaciniramante

Shifts in Kappa are due to changes in composition,
assuming constant water droplet surface tension

Aerosols that activate and
become cloud droplets

Particle Number Concentration

Scanning
Mobility CCN
Analysis
Moore, and Nenes,
2010)
: : > 443
Particle Dry Diameter| x =
27D3In2S,
40.,, M
l Constant s A= %
Pw
A
1
pa
(&
0.5
Z calculate d_ for
&) varying s
0 >

Particle Dry Diameter

—

Critical Supersaturation {%)

=
—

£y
b
]
N~
£
L ]
*
L

K=0

on-hygroscopic

LY
+*
'Y
*
*
-
‘1-
*

" K=0.6 .
Ammonium Y
Sulfate -

- *1- -

! T3 s ia7s] T 3 458

10 100 1000

Dry diameter {nm)
CCN Activity depends on:

1) Particle Size
2) Composition
3) Surface Tension

44




-
<
L
=
>
=
O
&
L
s
—
L
)
o
<
-t
o
i
2,
-

supersaturation, s (%)

UNIVERSITY OF CALIFORNIA, RIVERSIDE

0.1
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K, hygroscopicity 1.00

* Chamise becomes less
hygroscopic with time

* Average k~ 0.098
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Surface Tension Measurement UcRIVERSIDE

Aerosols are deposited onto a Samples are photographed with a
Teflon filter Pendant Drop Tensiometer (PDT)
and the Young-Laplace Equation
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MilliQ water
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Correcting for Surfactants
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Correcting for Surfactants

Hygroscopicity, K
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Chamise

* The corrected
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values are
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* Lower values
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with values
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Hours of Experiment
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Correcting for Surfactants UCRIVERSIDE

Lights on

* SURFACTANTS
ARE REAL!
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Correcting for Surfactants UCRIVERSIDE

Hygroscopicity,

Manzqnia * SURFACTANTS
ARE REAL!
* And their
effects can be
0 1 2 3 4 5 6 significant!

Hours of Experiment

Giordano et al., 2013, ES&T
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Surfactants are never the same!
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Hygroscopic growth and CCN activity of HULIS
from different environments

Thomas B. Kristensen,' Heike Wex,” Bettina Nekat,” Jacob K. Nasj,gaard,3
Dominik van Pin:(tcn.:n,2 Douglas H. Lowcnthal,4 Lynn R. Mazzoleni,”

2

Katrin Dieckmann,” Christian Bender Koch,' Thomas F. Mentel .®
Hartmut Herrmann,” A. Gannet Hallar,” Frank Stratmann.” and Merete Bilde'
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(3) Time changes everything

[ 01 e changes eveyting_|
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(2) Chemistry is Important

{ Figure 1. CCN activities of atmospheric HULIS samples

as reported in the literature, together with values obtained
in this study. For comparison SRFA is included, and the
dashed line gives the theoretical values for ammonium sul-
fate. For details about the studies and samples see Table 1.



Size Does Matter!

DeCarlo et al., 2010 ACP
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Size Matters!
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Shifting from non-spherical to spherical UCRIVERSIDE
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Conclusions UCKIVERSIDE

> Surfactants are Real

Surfactants are indeed present in aerosol systems, can be generated
under controlled conditions, and may alter observed hygroscopicity and
droplet formation ability by twofold.

Surfactant properties depend on aerosol aging and can be ephemeral
thus explaining the lack of consensus in the current body of literature, .

> The changing fractal/sphericity of fresh and aged
biomass burning aerosol can be accounted for in
CCN Analysis

> Size, Chemistry and Time are critical and relevant
properties for CCN Biomass Burning Analysis.
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MIXING STATE FLOW TUBE

Part 3:
BC/OC Mixing State CCN




Measuring CCN Activity
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Real Data Sets

CCN data sets from ambient and
environmental chamber studies
can consist of complex mixtures of
organic and inorganic aerosols

Common assumptions

— Doubly charged aerosols

— Uniform composition

- Single fit
Multiple activation curves...?
— Different components?

— Mixing state? Type / Extent?
Complex mixtures?

mixtures
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GOAL: Improve experimental analysis techniques of CCN of complex




Mixing States: Internal / External Mixtures
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Recreating Activation Curves: Known Mixtures

CCNC was operated between 0.2 and 1.1 SS%

—>] 'g' ]
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Multiple Activation Curves: External Mixtures

Data sets yielding multiple activation curves were recreated by mixing two well characterized compounds
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Future Work

—> 1 ] |
FLOW TUBE
@=7.08", length 78”, ~50.3 liters
Atomizer SMPS/CCNC
CAST
Environmental
Chamber
Inorganic | Ammonium Sulfate (NH,),SO,
Salts Sodium Chloride (NaCl)
Stream 1 Stream 2 i Succinic Acid
From Table From Table Primary Organic Dioctyl Phthalate (DOP)
Extend data analysis to Black Combustiorw ;Aerosol Stan(;:la!'d .(|CAST):
include more complex mixed Carbon soot partic es gengrate >imiiar to
i soot derived diesel engines
systems from both primary
and secondary sources Biogenic Isoprene
Secondary SOA _pinene
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OUR APPROACH TO COMPLEX HYGROSCOPIC PARTICLES

Source: NASA : Black Carbon Cloud Droplets (artist rendition)

(1) Provide Fast Measurement Techniques for Real-Worid BC
Sources

(2) Characterize changes in Physical and Chemical Properties that
can alter perceived Hygroscopicity of BC sources

(3) Refine Analysis Methods for complex CCN Mixing States
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